The PhD will be carried out at the DLR Institute for Future Fuels in Cologne as part of EU co-funded research projects. The candidate will be part of an interdisciplinary, multinational research team of chemical and materials engineers and will have access to state-of-the-art chemical and ceramic processing laboratories and a broad infrastructure of analytical and structural characterisation tools available at the DLR facility in Cologne-Porz-Wahn. The doctorate is awarded by RWTH Aachen University as part of the Chair of Solar Fuels in the Faculty of Mechanical Engineering, which was established jointly with DLR.
In the broader environmental, societal and political framework of a carbon-neutral future energy mix, there is an urgent need for the use of renewable energy (RE) for electricity generation as well as for carbon-free industrial process heat. One approach to decarbonising industrial process heat is so-called 'electrification', based on RE resources; however, these are unsteady, so effective ways of storing RE in the form of heat need to be developed in parallel to ensure 24/7 operation. The high-temperature regenerative heat storage and recovery systems currently used in industry consist of porous ceramic media that are "charged", i.e. heated, with hot process exhaust gases. In addition, several oxide systems are capable of (endothermic) thermal reduction and reversible exothermic oxidation in an air atmosphere, which is accompanied by considerable heat effects and can thus significantly increase the storage density. Current work at DLR has already shown that storage devices made of low-cost, environmentally friendly perovskite materials can not only enable cyclic, reversible charge/discharge operation, but can also be formed into stable porous ceramic structures. These properties and the ability to utilise gas flows under high pressure and without significant pressure drop make the specific approach fully compatible with the "modularity" and thus easy scalability of commercial regenerative heat storage/recovery systems, which can thus be transformed into hybrid thermochemical heat storage/heat exchangers. For an envisaged commercialisation of such concepts, it is necessary to develop a scalable process for the fabrication of such porous solid structures through a rational design from the molecular level upwards and to validate their reliable operation through long-term cycling tests.
In this context and perspective, the main goals and tasks of the dissertation are the following:
Look forward to a fulfilling job with an employer who appreciates your commitment and supports your personal and professional development. Our unique infrastructure offers you a working environment in which you have unparalleled scope to develop your creative ideas and accomplish your professional objectives. Our human resources policy places great value on a healthy family and work-life-balance as well as equal opportunities for persons of all genders (f/m/x).Individuals with disabilities will be given preferential consideration in the event their qualifications are equivalent to those of other candidates.
Academic Europe, the European career network for Academics, Researchers and Scientists